In Pulmonary Arterial Hypertension, Reduced BMPR2 Promotes Endothelial-to-Mesenchymal Transition via HMGA1 and Its Target Slug.
نویسندگان
چکیده
BACKGROUND We previously reported high-throughput RNA sequencing analyses that identified heightened expression of the chromatin architectural factor High Mobility Group AT-hook 1 (HMGA1) in pulmonary arterial endothelial cells (PAECs) from patients who had idiopathic pulmonary arterial hypertension (PAH) in comparison with controls. Because HMGA1 promotes epithelial-to-mesenchymal transition in cancer, we hypothesized that increased HMGA1 could induce transition of PAECs to a smooth muscle (SM)-like mesenchymal phenotype (endothelial-to-mesenchymal transition), explaining both dysregulation of PAEC function and possible cellular contribution to the occlusive remodeling that characterizes advanced idiopathic PAH. METHODS AND RESULTS We documented increased HMGA1 in PAECs cultured from idiopathic PAH versus donor control lungs. Confocal microscopy of lung explants localized the increase in HMGA1 consistently to pulmonary arterial endothelium, and identified many cells double-positive for HMGA1 and SM22α in occlusive and plexogenic lesions. Because decreased expression and function of bone morphogenetic protein receptor 2 (BMPR2) is observed in PAH, we reduced BMPR2 by small interfering RNA in control PAECs and documented an increase in HMGA1 protein. Consistent with transition of PAECs by HMGA1, we detected reduced platelet endothelial cell adhesion molecule 1 (CD31) and increased endothelial-to-mesenchymal transition markers, αSM actin, SM22α, calponin, phospho-vimentin, and Slug. The transition was associated with spindle SM-like morphology, and the increase in αSM actin was largely reversed by joint knockdown of BMPR2 and HMGA1 or Slug. Pulmonary endothelial cells from mice with endothelial cell-specific loss of Bmpr2 showed similar gene and protein changes. CONCLUSIONS Increased HMGA1 in PAECs resulting from dysfunctional BMPR2 signaling can transition endothelium to SM-like cells associated with PAH.
منابع مشابه
Elafin Reverses Pulmonary Hypertension via Caveolin-1-Dependent Bone Morphogenetic Protein Signaling.
RATIONALE Pulmonary arterial hypertension is characterized by endothelial dysfunction, impaired bone morphogenetic protein receptor 2 (BMPR2) signaling, and increased elastase activity. Synthetic elastase inhibitors reverse experimental pulmonary hypertension but cause hepatotoxicity in clinical studies. The endogenous elastase inhibitor elafin attenuates hypoxic pulmonary hypertension in mice,...
متن کاملTargeted gene delivery of BMPR2 attenuates pulmonary hypertension.
Pulmonary arterial hypertension (PAH) remains a fatal disease despite modern pharmacotherapy. Mutations in the gene for bone morphogenetic protein receptor type II (BMPR2) lead to reduced BMPR2 expression, which is causally linked to PAH. BMPR2 is predominantly expressed on pulmonary endothelium and has complex interactions with transforming growth factor (TGF)-β signalling mechanisms. Our obje...
متن کاملPulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension
Pulmonary arterial hypertension (PAH) is associated with metabolic derangements including insulin resistance, although their effects on the cardiopulmonary disease are unclear. We hypothesized that insulin resistance promotes pulmonary hypertension (PH) development and mutations in type 2 bone morphogenetic protein receptor (BMPR2) cause cellular insulin resistance. Using a BMPR2 transgenic mur...
متن کاملBone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension.
Mutations in the bone morphogenetic protein (BMP) receptor-2 (BMPR2) have been found in patients with idiopathic pulmonary arterial hypertension (IPAH); however, the mechanistic link between loss of BMPR2 signaling and the development of pulmonary arterial hypertension is unclear. We hypothesized that, contrary to smooth muscle cells, this pathway promotes survival in pulmonary artery endotheli...
متن کاملEndothelial-to-mesenchymal transition in pulmonary hypertension.
BACKGROUND The vascular remodeling responsible for pulmonary arterial hypertension (PAH) involves predominantly the accumulation of α-smooth muscle actin-expressing mesenchymal-like cells in obstructive pulmonary vascular lesions. Endothelial-to-mesenchymal transition (EndoMT) may be a source of those α-smooth muscle actin-expressing cells. METHODS AND RESULTS In situ evidence of EndoMT in hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 133 18 شماره
صفحات -
تاریخ انتشار 2016